No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
My Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ( )
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
Uppercase Letter
Lowercase Letter
Uppercase or Lowercase Letter
Number
Special Character
Password length of
or more and have
of the following:
Password 2 does not match password.
Add to My Interests
Remove from My Interests
Session Speakers
Session Description
We'll showcase the latest successes with GPU acceleration of challenging molecular simulation analysis tasks on the latest Volta and Turing GPUs paired with both Intel and IBM/OpenPOWER CPUs on petascale computers such as ORNL Summit. This presentation will highlight the performance benefits obtained from die-stacked memory, NVLink interconnects, and the use of advanced features of CUDA such as just-in-time compilation to increase the performance of key analysis algorithms. We will present results obtained with OpenACC parallel programming directives, as well as discuss current challenges and future opportunities. We'll also describe GPU-Accelerated machine learning algorithms for tasks such as clustering of structures resulting from molecular dynamics simulations. To make our tools easy to deploy for non-tradtional users of HPC, we publish GPU-Accelerated container images in NGC, and Amazon EC2 AMIs for GPU instance types.
Additional Information
Session Length:
50 minutes
Session Schedule
!
We use cookies on this website to enhance your browsing experience and measure our audience.
Click here to find out more about how we use cookies. By continuing to use this website, or by closing this box, you are indicating your consent to our use of cookies.
Do Not Sell My Personal Information