No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
My Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2019 GTC San Jose
Add to My Interests
Remove from My Interests

S9798 - BlazingSQL on RAPIDS: SQL for Apache Arrow in GPU Memory. Connect Data Lakes to RAPIDS

Session Speakers
Session Description

Learn about BlazingSQL, our new, free GPU SQL engine built on RAPIDS open-source software. We will show multiple demo workflows using BlazingSQL to connect data lakes to RAPIDS tools. We'll explain how we dramatically accelerated our engine and made it substantially more lightweight by integrating Apache Arrow into GPU memory and cuDF into RAPIDS. That made it easy to install and deploy BlazingSQL + RAPIDS in a matter of minutes. More importantly, we built a robust framework to help users bring data from data lakes into GPU-Accelerated workloads without having to ETL on CPU memory or separate GPU clusters. We'll discuss how that makes it possible to keep everything in the GPU while BlazingSQL manages the SQL ETL. RAPIDS can then take these results to continue machine learning, deep learning, and visualization workloads.


Additional Information
Accelerated Data Science
Accelerated Data Science
General
Intermediate technical
Talk.1
50 minutes
Session Schedule