No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
My Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2019 GTC San Jose
Add to My Interests
Remove from My Interests

S91043 - RAPIDS CUDA DataFrame Internals for C++ Developers

Session Speakers
Session Description

The core of RAPIDS is CUDA DataFrame (cuDF), a library that provides Pandas-like DataFrame (a columnar data structure) functionality with GPU acceleration. cuDF provides a Python interface for use in existing data science workflows, and underneath cuDF is libcuDF, an open-source CUDA C++ library that provides a column data structure and algorithms to operate on these columns, such as filtering, selection, sorting, joining, and groupby. In this talk you will learn about some of the C++ and CUDA internals of libcuDF. This talk will cover how we perform run-time type dispatch on type-erased data structures to enable operating on a variety of data types and interface with dynamic languages like Python. We’ll describe how and why we built a pool allocator for CUDA device memory to massively improve performance on multi-GPU systems. And we’ll dive into GPU algorithms we use for multi-column database operations like groupby and join. If you are interested in using GPU DataFrames via libcuDF’s C/C++ interface, or if you are interested in contributing to the cuDF / libcuDF open source project, then this talk is for you.


Additional Information
Accelerated Data Science
Accelerated Data Science
General
All technical
Talk
50 minutes
Session Schedule